Functional Conservation of the Telomerase Protein Est1p in Humans

نویسندگان

  • Bryan E. Snow
  • Natalie Erdmann
  • Jennifer Cruickshank
  • Hartt Goldman
  • R.Montgomery Gill
  • Murray O. Robinson
  • Lea Harrington
چکیده

Eukaryotic telomerase contains a telomerase reverse transcriptase (TERT) and an RNA template component that are essential for telomerase catalytic activity and several other telomerase-associated factors of which only a few appear to be integral enzyme components [1-3]. The first essential telomerase protein identified was S. cerevisiae Est1p, whose deletion leads to ever-shorter telomeres despite the persistence of telomerase activity [4-6]. Extensive genetic and biochemical data show that Est1p, via its interaction with the telomerase RNA and telomere end DNA binding complex Cdc13p/Stn1p/Ten1p, promotes the ability of telomerase to elongate telomeres in vivo [7-22]. The characterization of Est1p homologs outside of yeast has not been documented. We report the characterization of two putative human homologs of Est1p, hEST1A and hEST1B. Both proteins specifically associated with telomerase activity in human cell extracts and bound hTERT in rabbit reticulocyte lysates independently of the telomerase RNA. Overproduction of hEST1A cooperated with hTERT to lengthen telomeres, an effect that was specific to cells containing telomerase activity. Like Est1p, hEST1A (but not hEST1B) exhibited a single-stranded telomere DNA binding activity. These results suggest that the telomerase-associated factor Est1p is evolutionarily conserved in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere Maintenance in Fission Yeast Requires an Est1 Ortholog

Telomerase regulation is critical to genome maintenance yet remains poorly understood. Without telomerase's ability to synthesize telomere repeats, chromosome ends shorten progressively, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. In Saccharomyces cerevisiae, telomerase activity in vivo absolutely depends on a set of telomerase accessory proteins that in...

متن کامل

Analysis of telomerase in Candida albicans: potential role in telomere end protection.

Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of telomere terminal repeats. Analysis of the telomerase complex in the budding yeast Saccharomyces cerevisiae has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The genome of the pathogenic yeast Candida albicans ...

متن کامل

Yeast telomerase RNA: a flexible scaffold for protein subunits.

In the yeast Saccharomyces cerevisiae, distinct regions of the 1.2-kb telomerase RNA (TLC1) bind to the catalytic subunit Est2p and to accessory proteins. In particular, a bulged stem structure binds the essential regulatory subunit Est1p. We now show that the Est1p-binding domain of the RNA can be moved to three distant locations with retention of telomerase function in vivo. We present the Es...

متن کامل

The Anaphase Promoting Complex Contributes to the Degradation of the S. cerevisiae Telomerase Recruitment Subunit Est1p

Telomerase is a multi-subunit enzyme that reverse transcribes telomere repeats onto the ends of linear eukaryotic chromosomes and is therefore critical for genome stability. S. cerevisiae telomerase activity is cell-cycle regulated; telomeres are not elongated during G1 phase. Previous work has shown that Est1 protein levels are low during G1 phase, preventing telomerase complex assembly. Howev...

متن کامل

A bulged stem tethers Est1p to telomerase RNA in budding yeast.

It is well established that the template for telomeric DNA synthesis is provided by the RNA subunit of telomerase; however, the additional functions provided by most of the rest of the RNA (>1000 nucleotides in budding yeast) are largely unknown. By alignment of telomerase RNAs of Saccharomyces cerevisiae and six Kluyveromyces species followed by mutagenesis of the S. cerevisiae RNA, we found a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003